首页> 外文OA文献 >Large Scale Metric Learning for Distance-Based Image Classification on Open Ended Data Sets
【2h】

Large Scale Metric Learning for Distance-Based Image Classification on Open Ended Data Sets

机译:开放式数据集上基于距离的图像分类的大规模度量学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many real-life large-scale datasets are open-ended and dynamic: new images are continuously added to existing classes, new classes appear over time, and the semantics of existing classes might evolve too. Therefore, we study large-scale image classification methods that can incorporate new classes and training images continuously over time at negligible cost. To this end, we consider two distance-based classifiers, the k-nearest neighbor (k-NN) and nearest class mean (NCM) classifiers. Since the performance of distance-based classifiers heavily depends on the used distance function, we cast the problem into one of learning a low-rank metric, which is shared across all classes. For the NCM classifier, we introduce a new metric learning approach, and we also introduce an extension to allow for richer class representations. Experiments on the ImageNet 2010 challenge dataset, which contains over one million training images of thousand classes, show that, surprisingly, the NCM classifier compares favorably to the more flexible k-NN classifier. Moreover, the NCM performance is comparable to that of linear SVMs which obtain current state-of-the-art performance. Experimentally we study the generalization performance to classes that were not used to learn the metrics. Using a metric learned on 1,000 classes, we show results for the ImageNet-10K dataset which contains 10,000 classes, and obtain performance that is competitive with the current state-of-the-art, while being orders of magnitude faster.
机译:许多现实生活中的大规模数据集都是开放式的和动态的:新图像不断添加到现有类中,新类随时间推移出现,并且现有类的语义也可能会演变。因此,我们研究了大规模的图像分类方法,该方法可以以可忽略的成本随着时间的推移不断引入新的类别并训练图像。为此,我们考虑两个基于距离的分类器,即k最近邻(k-NN)和最近分类均值(NCM)分类器。由于基于距离的分类器的性能在很大程度上取决于所使用的距离函数,因此我们将此问题归结为学习低等级指标之一,该指标在所有类别中都可以共享。对于NCM分类器,我们引入了一种新的度量学习方法,并且还引入了扩展以允许使用更丰富的类表示形式。在ImageNet 2010挑战数据集上进行的实验表明,令人惊讶的是,NCM分类器比更灵活的k-NN分类器更胜一筹,该数据集包含一百万个类别的一百万个训练图像。而且,NCM性能与获得当前最新性能的线性SVM相当。通过实验,我们研究了不用于学习指标的类的泛化性能。使用在1,000个类别上学习的度量,我们显示了包含10,000个类别的ImageNet-10K数据集的结果,并获得了与当前最新技术竞争的性能,同时速度提高了几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号